Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

Identifieur interne : 000E33 ( Main/Exploration ); précédent : 000E32; suivant : 000E34

Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

Auteurs : Antoine P. Pagé [Canada] ; Étienne Yergeau [Canada] ; Charles W. Greer [Canada]

Source :

RBID : pubmed:26161539

Descripteurs français

English descriptors

Abstract

The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(a)pyrene, biphenyl, polychlorinated biphenyls). An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the efficiency of current willow-based rhizoremediation applications.

DOI: 10.1371/journal.pone.0132062
PubMed: 26161539
PubMed Central: PMC4498887


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.</title>
<author>
<name sortKey="Page, Antoine P" sort="Page, Antoine P" uniqKey="Page A" first="Antoine P" last="Pagé">Antoine P. Pagé</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Natural Resource Sciences, McGill University, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Étienne" last="Yergeau">Étienne Yergeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Energy, Mining and Environment, National Research Council Canada, Montréal, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greer, Charles W" sort="Greer, Charles W" uniqKey="Greer C" first="Charles W" last="Greer">Charles W. Greer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada; Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada; Energy, Mining and Environment, National Research Council Canada, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26161539</idno>
<idno type="pmid">26161539</idno>
<idno type="doi">10.1371/journal.pone.0132062</idno>
<idno type="pmc">PMC4498887</idno>
<idno type="wicri:Area/Main/Corpus">000E66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E66</idno>
<idno type="wicri:Area/Main/Curation">000E66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E66</idno>
<idno type="wicri:Area/Main/Exploration">000E66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.</title>
<author>
<name sortKey="Page, Antoine P" sort="Page, Antoine P" uniqKey="Page A" first="Antoine P" last="Pagé">Antoine P. Pagé</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Natural Resource Sciences, McGill University, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Étienne" last="Yergeau">Étienne Yergeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Energy, Mining and Environment, National Research Council Canada, Montréal, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greer, Charles W" sort="Greer, Charles W" uniqKey="Greer C" first="Charles W" last="Greer">Charles W. Greer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada; Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada; Energy, Mining and Environment, National Research Council Canada, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinomycetales (enzymology)</term>
<term>Actinomycetales (genetics)</term>
<term>Alteromonadaceae (enzymology)</term>
<term>Alteromonadaceae (genetics)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Burkholderiaceae (enzymology)</term>
<term>Burkholderiaceae (genetics)</term>
<term>Caulobacteraceae (enzymology)</term>
<term>Caulobacteraceae (genetics)</term>
<term>Cytochrome P-450 CYP4A (genetics)</term>
<term>Cytochrome P-450 CYP4A (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Laccase (genetics)</term>
<term>Laccase (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Oxygenases (genetics)</term>
<term>Oxygenases (metabolism)</term>
<term>Petroleum Pollution (analysis)</term>
<term>Rhizobiaceae (enzymology)</term>
<term>Rhizobiaceae (genetics)</term>
<term>Rhodospirillales (enzymology)</term>
<term>Rhodospirillales (genetics)</term>
<term>Salix (physiology)</term>
<term>Soil Pollutants (analysis)</term>
<term>Xenobiotics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actinomycetales (enzymologie)</term>
<term>Actinomycetales (génétique)</term>
<term>Alteromonadaceae (enzymologie)</term>
<term>Alteromonadaceae (génétique)</term>
<term>Burkholderiaceae (enzymologie)</term>
<term>Burkholderiaceae (génétique)</term>
<term>Caulobacteraceae (enzymologie)</term>
<term>Caulobacteraceae (génétique)</term>
<term>Cytochrome P-450 CYP4A (génétique)</term>
<term>Cytochrome P-450 CYP4A (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Laccase (génétique)</term>
<term>Laccase (métabolisme)</term>
<term>Oxygénases (génétique)</term>
<term>Oxygénases (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Pollution pétrolière (analyse)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Rhizobiaceae (enzymologie)</term>
<term>Rhizobiaceae (génétique)</term>
<term>Rhodospirillales (enzymologie)</term>
<term>Rhodospirillales (génétique)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Salix (physiologie)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
<term>Xénobiotique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cytochrome P-450 CYP4A</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Iron-Sulfur Proteins</term>
<term>Laccase</term>
<term>Oxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants du sol</term>
<term>Pollution pétrolière</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Petroleum Pollution</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Actinomycetales</term>
<term>Alteromonadaceae</term>
<term>Burkholderiaceae</term>
<term>Caulobacteraceae</term>
<term>Rhizobiaceae</term>
<term>Rhodospirillales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Actinomycetales</term>
<term>Alteromonadaceae</term>
<term>Burkholderiaceae</term>
<term>Caulobacteraceae</term>
<term>Rhizobiaceae</term>
<term>Rhodospirillales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinomycetales</term>
<term>Alteromonadaceae</term>
<term>Burkholderiaceae</term>
<term>Caulobacteraceae</term>
<term>Rhizobiaceae</term>
<term>Rhodospirillales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Actinomycetales</term>
<term>Alteromonadaceae</term>
<term>Burkholderiaceae</term>
<term>Caulobacteraceae</term>
<term>Cytochrome P-450 CYP4A</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Ferrosulfoprotéines</term>
<term>Laccase</term>
<term>Oxygénases</term>
<term>Protéines bactériennes</term>
<term>Rhizobiaceae</term>
<term>Rhodospirillales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cytochrome P-450 CYP4A</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Iron-Sulfur Proteins</term>
<term>Laccase</term>
<term>Oxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochrome P-450 CYP4A</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Ferrosulfoprotéines</term>
<term>Laccase</term>
<term>Oxygénases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Genes, Bacterial</term>
<term>Metabolic Networks and Pathways</term>
<term>Xenobiotics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Gènes bactériens</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Voies et réseaux métaboliques</term>
<term>Xénobiotique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(a)pyrene, biphenyl, polychlorinated biphenyls). An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the efficiency of current willow-based rhizoremediation applications. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26161539</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.</ArticleTitle>
<Pagination>
<MedlinePgn>e0132062</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0132062</ELocationID>
<Abstract>
<AbstractText>The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(a)pyrene, biphenyl, polychlorinated biphenyls). An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the efficiency of current willow-based rhizoremediation applications. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pagé</LastName>
<ForeName>Antoine P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yergeau</LastName>
<ForeName>Étienne</ForeName>
<Initials>É</Initials>
<AffiliationInfo>
<Affiliation>Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greer</LastName>
<ForeName>Charles W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada; Energy, Mining and Environment, National Research Council Canada, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015262">Xenobiotics</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.2</RegistryNumber>
<NameOfSubstance UI="D042845">Laccase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.12.18</RegistryNumber>
<NameOfSubstance UI="C074161">biphenyl-2,3-dioxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.15.3</RegistryNumber>
<NameOfSubstance UI="D042926">Cytochrome P-450 CYP4A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000192" MajorTopicYN="N">Actinomycetales</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034241" MajorTopicYN="N">Alteromonadaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042521" MajorTopicYN="N">Burkholderiaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042063" MajorTopicYN="N">Caulobacteraceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042926" MajorTopicYN="N">Cytochrome P-450 CYP4A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042845" MajorTopicYN="N">Laccase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059392" MajorTopicYN="N">Petroleum Pollution</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012230" MajorTopicYN="N">Rhizobiaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012245" MajorTopicYN="N">Rhodospirillales</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015262" MajorTopicYN="N">Xenobiotics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26161539</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0132062</ArticleId>
<ArticleId IdType="pii">PONE-D-15-08845</ArticleId>
<ArticleId IdType="pmc">PMC4498887</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Oct;97(20):9245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23250224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Oct;180(19):5218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Sep;95(6):1589-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22202970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Mar;62(9):1411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2012 Jun;34(6):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2010 Sep;12(7):716-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2013;15(3):232-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23488009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 15;288(7):4502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Jun;6(6):574-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15142245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Jun 15;41(12):4382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Oct 01;4:291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 May-Jun;28(3):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20149857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2006 May;79(3):232-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16202508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):344-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24067257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2012 Aug;88(10):1190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22520968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2005;7(3):177-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2003 Sep;22(9):1998-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12959523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2008 Nov;1(6):463-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Jun;74(12):3812-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Aug;136(3):477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:269-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 19;9:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2009 Nov;16(7):817-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19823887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1995 Nov 15;133(3):259-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8522140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Feb;62(2):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2004 Aug;130(3):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15182977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Oct;11(10):2477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19807712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Public Health. 2013;2013:158764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23843802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2008 May-Jun;10(3):208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2004 Jan;47(1):96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15259274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jun;6(6):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Jun;16(3):308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Feb 15;472:642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24317170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 May 15;4:4968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24829093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):331-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23985744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1971 Oct;108(1):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4399343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Oct;7(10):e1002195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2014 May;36(5):889-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24563292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2010 Jan;12(1):54-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20734628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Mar 21;4:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Environ Contam Toxicol. 2010;206:65-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20652669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2010 Aug;17(7):1355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2008 May;105(5):433-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18558332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):1933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Sep 1;41(3):191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2011 Jun;84(2):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2011 Sep 15;409(20):4489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 Nov;32(6):927-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 Oct;13(18-19):2910-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23616470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Apr;72(4):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2000 May;46(5):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Dec;62(12):4563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2010 Dec 15;184(1-3):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2008;15(2-3):121-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Québec">
<name sortKey="Page, Antoine P" sort="Page, Antoine P" uniqKey="Page A" first="Antoine P" last="Pagé">Antoine P. Pagé</name>
</region>
<name sortKey="Greer, Charles W" sort="Greer, Charles W" uniqKey="Greer C" first="Charles W" last="Greer">Charles W. Greer</name>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Étienne" last="Yergeau">Étienne Yergeau</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26161539
   |texte=   Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26161539" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020